

1.2V to 3.6V Universal Bidirectional Level Shifter with Automatic Direction Control

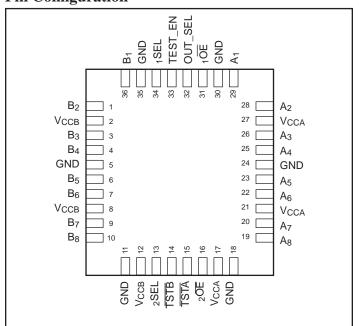
Features

- PI4ULS3V08 is designed for low voltage operation: 1.2V to 3.6V
- Universal bidirectional level shifting with automatic direction control
- Fast bus speeds up to 180 Mbps
- Drive Capability 12mA
- · Independent translation of each bit
- Each supply rail is configurable over supply range
- ESD Protection exceeds JESD22
 - 2000V Human Body Model (A114-B)
 - 200V Machine Model (A115-A)
- Latch-up performance exceeds 100mA per JESD 78
- Industrial operation at -40°C to +85°C
- Packaging (Pb-free & Green): 36-contact TQFN (ZF36)

Applications

- · Voltage Translation
- Bus Relay

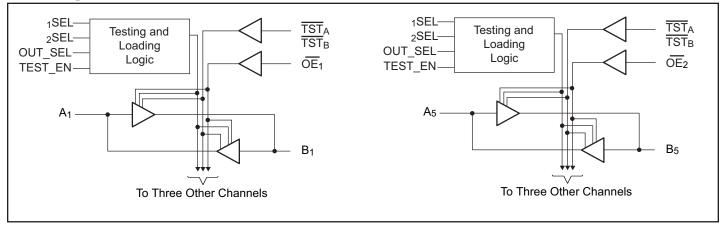
Description


PI4ULS3V08, is a 8-bit (octal) non-inverting bus transceiver with two separate supply rails: A port (V_{CCA}) and B port (V_{CCB}) are set to operate at 1.2V to 3.6V. This arrangement permits universal bidirectional translation of differential signal levels over the voltage ranges.

The PI4ULS3V08 is designed for asynchronous communication between data buses. Data is transmitted from the A bus to the B bus, or vice versa, without direction control. All A_X , and B_X are tri-stated when data is coming from both directions at the same time. The output-enable (\overline{OE}) input is used to disable outputs so buses are isolated.

The control pins, $_xSEL$, $\overline{OE}x$, \overline{TEST}_EN and OUT_SEL are supplied by V_{CCB} .

To ensure the high impedance state during power-up or power-down, the output-enable (\overline{OE}) input should be tied to V_{CC} through a pullup resistor: the minimum value of the resistor is determined by the current-sinking capability of the driver.


Pin Configuration

08-0139 1 PS8773H 06/13/08

Block Diagram

Maximum Ratings

(Absolute maximum ratings over operating free-air temperature range, unless otherwise noted)

Supply voltage range: V _{CCA}	-0.5V to 4.6V	Input clamp current, I _{IK} (V _I <0)–50mA
Input voltage range, V _I ⁽¹⁾ Control l		Output clamp current, I_{OK} (V_{O} <0)
Voltage Range applied to any I/O pin or Power-Off state, $V_{IO}^{\ \ (1)}$:		Continuous current through V _{CCA} , V _{CCB} or GND ±100mA Package thermal impedance, 0 _{JA} ⁽³⁾ :
	-0.5V to 4.6V -0.5V to 4.6V	ZF package33°C/W
	s in the High or Low 	Storage temperature range, T _{STG} –65°C to 150°C

Note:

- 1. The input negative voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.
- 2. This value is limited to 3.6V maximum.
- 3. The package thermal impedance is calculated in accordance with JESD 51.
- 4. Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Pin Description

Pin Name	Description		
$\overline{\text{OE}}_{ ext{X}}$	3-State Output Enable Inputs (Active LOW)		
XSEL	Outputs Loading Selection		
XAX Side A Inputs/Outputs			
$\chi B \chi$	Side B Inputs/Outputs		
TEST_EN	Enable Test Mode		
OUT_SEL	Test Mode Selection		
GND	Ground		
V _{CCA} , V _{CCB}	Power		
TST_X	Internal test pin. For normal use please tie to GND		

Truth Table⁽¹⁾

Inputs			Outputs Loading ⁽²⁾	Operation			
$x\overline{OE}$	₂ SEL	1SEL	Outputs Loading	Operation			
L	L	L	$C_{\rm L} \le 50 {\rm pF}$				
L	L	Н	$C_L \leq 30 pF$	Bus B data to			
L	Н	L	$C_L \leq 20 pF$	Bus A, or Bus A data to Bus B			
L	Н	Н	$C_L \le 10 pF$				
Н	X	X		Z (Isolation)			

Notes:

1. H = HIGH Signal Level

L = LOW Signal Level

X = Don't Care or Irrelevant

Z = High Impedance

2. Refer to Figure 1 for Output Loading Chart

Test Mode / Output Impedance Select

TEST_EN	Out_SEL	Condition
L	L	Normal Operation Low output impedance 300Ω
L	Н	Normal Operation High output impedance 2.2KΩ
Н	L	Test_MODE A \rightarrow B
Н	Н	Test_MODE B \rightarrow A

Recommended Operating Conditions (1, 2, 3)

Parameter	D	escription	V_{CCI}	Min.	Max.	Units
V _{CCA} , V _{CCB}	Supply Voltage			1.2	3.6	
			1.2V to 1.95V	0.65 x V _{CCI}		
$ m V_{IH}$	High-Level Input Voltage	I/O pins	2.3V to 2.7V	1.7		
	Voltage		2.7V to 3.6V	2		
			1.2V to 1.95V		0.35 x V _{CCI}	
$ m V_{IL}$	Low-Level Input Voltage	I/O pins	2.3V to 2.7V		0.7	
	Voltage		2.7V to 3.6V		0.8	
			1.2V to 1.95V	0.65 x V _{CCB}		V
V_{IHB}	High-Level Input Voltage	Control Inputs (OE and SEL)	2.3V to 2.7V	1.7		
	Voltage	(OE and SEE)	2.7V to 3.6V	2		
			1.2V to 1.95V		0.35 x V _{CCB}	
$V_{\rm ILB}$	Low-Level Input Voltage		2.3V to 2.7V		0.7	
	voitage	(OE and SEE)	2.7V to 3.6V		0.8	
VI	Input Voltage	I/O pins and Control Inputs		0	3.6	
V_{O}	Output Voltage	I/O pins and Control Inputs		0	3.6	
			$V_{CCO} = 1.2V$		-3	
			$V_{CCO} = 1.4V$		-5	
I_{OH}	High-Level Output Current	I/O pins	$V_{CCO} = 1.65V$		-8	
	Current		$V_{CCO} = 2.3V$		-9	
			$V_{CCO} = 3.0V$		-12	mA
			$V_{CCO} = 1.2V$		3	IIIA
			$V_{CCO} = 1.4V$		5	
I_{OL}	Low-Level Output Current	I/O pins	$V_{CCO} = 1.65V$		8	
			$V_{\rm CCO} = 2.3 V$		9	
			$V_{CCO} = 3.0V$		12	
$\Delta t/\Delta V$	Input Transition rise	or fall rate			10	V/ns
T _A	Operating Free-Air T	emperature emperature		-40	85	°C

Notes:

- 1. V_{CCI} is the V_{CC} associated with the data input port.
- V_{CO} is the V_{CC} associated with the date output port.
- 3. To ensure proper device operation, all unused device inputs must be held at V_{CCI} or GND.

08-0139 3 PS8773H 06/13/08

Electrical Characteristics for (Over recommended free-air temperature range, unless otherwise noted.)⁽³⁾

Parameter	Description	Test Conditions	V _{CCA} /V _{CCB}	Min.	Typ. (1)	Max.	Units
		$I_{OH} = -100 \mu A$	1.2V to 3.6V	V _{CCO} - 0.1V			
		Lorr - Am A	1.2V		0.8		
3.7	III'-l. I1 Ot4 W-1t	$I_{OH} = -4mA$	1.4V	1			
$V_{ m OH}$	High-Level Output Voltage	$I_{OH} = -7mA$	1.65V	1.2			
		$I_{OH} = -9mA$	2.3V	1.8			
		$I_{OH} = -12mA$	3.0V	2.4			V
		$I_{OL} = 100 \mu A$	1.2V to 3.6V			0.2	ľ
	Low-Level Output Voltage	$I_{OL} = 4mA$	1.2V		0.1		
Vor		10L – 4111A	1.4V			0.4	
$V_{ m OL}$		$I_{OL} = 7mA$	1.65V			0.4	
		$I_{OL} = 9mA$	2.3V			0.4	
		$I_{OL} = 12mA$	3.0V			0.4	
I _{CC}	Quiescent Supply Current	$V_I = V_{CCI}$ or GND, $I_O = 0$	1.2V to 3.6V			10	
II	Control Inputs (OE and SEL)	$V_I = V_{CCB}$ or GND	1.2V to 3.6V			±5	μΑ
$I_{OZ}^{(2)}$	3-State Output Current	$V_O = V_{CCO}$ or GND	1.2V to 3.6V			±10	
C_{IN}	Control Input Capacitance	$V_{\rm I} = V_{\rm CCB}$ or GND			3		рF
C_{IO}	I/O Capacitance	$V_O = V_{CCA/B}$ or GND			5		pF

Notes:

- 1. All typical values are at $T_A = 25$ °C.
- 2. For I/O ports, the parrameter I_{OZ} includes the input leakage current.
- 3. Parameters are specified under test mode conditions.

Timing Characteristics for $V_{CCA} = 1.5V \pm 0.1V$

(Over recommended free-air temperature range, unless otherwise noted.)

Parameter	1 1	To	$V_{CCB} = 1.2V$	V _{CCB} = 1.5V ±0.1V		$V_{CCB} = 1.8V$ $\pm 0.15V$		$V_{CCB} = 2.5V$ $\pm 0.2V$		$V_{\text{CCB}} = 3.3V$ $\pm 0.3V$		Units
		(Output)	Тур	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
-	A	В	8	1.0	7.0	1.0	6.5	1.0	6.0	1.0	5.0	
t _{PD}	В	A	6	1.0	7.0	1.0	6.5	1.0	6.0	1.0	5.5	
$t_{SK(a)}^{(1)}$					0.3		0.3		0.3		0.3	ns
$t_{SK(b)}^{(1)}$					0.25		0.25		0.25		0.25	
f _{max}	A	В	25	30		40		50		60		MHz
10pF load	В	A	30	30		35		40		40		

Note:

1. This is the skew between any two outputs of the same package, and switching in the same direction. For $t_{SK(a)}$, Output 1 and Output 2 are any two outputs. For $t_{SK(b)}$, Output 1 and Output 2 are in the same bank. These parameters are warranted but not production tested.

Timing Characteristics for $V_{CCA} = 1.8V \pm 0.15V$

(Over recommended free-air temperature range, unless otherwise noted.)

Parameter	From		$V_{CCB} = 1.2V$	$V_{\text{CCB}} = 1.5V$ $\pm 0.1V$		$V_{CCB} = 1.8V$ $\pm 0.15V$		$V_{CCB} = 2.5V$ $\pm 0.2V$		$V_{\text{CCB}} = 3.3V$ $\pm 0.3V$		Units
	(Input) (Output	(Output)	Тур	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
4	A	В	8	1.0	6.0	0.5	5.5	0.5	5.0	0.5	4.5	
t_{PD}	В	A	6	1.0	6.0	0.5	5.5	0.5	5.0	0.5	4.5	
$t_{SK(a)}^{(1)}$					0.25		0.25		0.25		0.25	ns
$t_{SK(b)}^{(1)}$					0.2		0.2		0.2		0.2	
f _{MAX} 10pF load	В	A	25	35		45		55		65		MHz
	A	В	30	40		45		50		55		MHz

Note:

Timing Characteristics for V_{CCA} = 2.5V ± 0.2 V

(Over recommended free-air temperature range, unless otherwise noted.)

Parameter	I I	To (Output)	$ \begin{vmatrix} V_{CCB} = 1.2V & V_{CCB} = 1.5V \\ \pm 0.1V & \end{vmatrix} $		$V_{\text{CCB}} = 1.8V$ $\pm 0.15V$		$V_{CCB} = 2.5V$ $\pm 0.2V$		$V_{\text{CCB}} = 3.3V$ $\pm 0.3V$		Units	
			Тур	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
4	A	В	8	1.0	5.5	0.5	5.0	0.5	4.5	0.5	4.0	
t _{PD}	В	A	6	1.0	5.5	0.5	5.0	0.5	4.5	0.5	4.0	.
$t_{SK(a)}^{(1)}$					0.25		0.25		0.25		0.25	ns
$t_{SK(b)}^{(1)}$					0.2		0.2		0.2		0.2	
f_{max}	В	A	30	40		50		75		80		MHz
10pF load	A	В	40	50		55		75		80		IVIHZ

Note:

1. This is the skew between any two outputs of the same package, and switching in the same direction. For $t_{SK(a)}$, Output 1 and Output 2 are any two outputs. For $t_{SK(b)}$, Output 1 and Output 2 are in the same bank. These parameters are warranted but not production tested.

08-0139 5 PS8773H 06/13/08

^{1.} This is the skew between any two outputs of the same package, and switching in the same direction. For $t_{SK(a)}$, Output 1 and Output 2 are any two outputs. For $t_{SK(b)}$, Output 1 and Output 2 are in the same bank. These parameters are warranted but not production tested.

Timing Characteristics for $V_{CCA} = 3.3V \pm 0.3V$

(Over recommended free-air temperature range, unless otherwise noted.)

Parameter From		To	1 ±0.1 V 1		$V_{\text{CCB}} = 1.8V$ $\pm 0.15V$		$V_{\text{CCB}} = 2.5V$ $\pm 0.2V$		$V_{\text{CCB}} = 3.3V$ $\pm 0.3V$		Units	
	(Input)	(Output)	Тур	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
4	A	В	7	1.0	5.0	0.5	4.5	0.5	4.0	0.5	3.5	
t _{PD}	В	A	6	1.0	5.0	0.05	4.5	0.5	4.0	0.5	3.5	
$t_{SK(a)}^{(1)}$					0.25		0.25		0.25		0.25	ns
$t_{SK(b)}^{(1)}$					0.2		0.2		0.2		0.2	
f _{max}	В	A	30	40		55		80		90		MHz
10pF load	A	В	40	60		65		80		90		

Note:

Operating Characteristics (V_{CCA} and $V_{CCB} = 2.5V$, $T_A = 25$ °C)

Paramete	r		Test Conditions	Тур.	Units	
	Dower Dissipation Conscitance A to D	Outputs Enabled		15		
Cpd (1)	Power Dissipation Capacitance A to B	Outputs Disabled	$C_L = 0$	2	"E	
(V_{CCA})	David Dissipation Conscitutes D to A	Outputs Enabled	f = 10 MHz	30	pF	
	Power Dissipation Capacitance B to A	Outputs Disabled		10		
	Devem Dissipation Conscitones A to D	Outputs Enabled		30	F	
Cpd (1)	Power Dissipation Capacitance A to B	Outputs Disabled	$C_L = 0$	10		
(V _{CCB})	David Dissipation Conscitutes D to A	Outputs Enabled	f = 10 MHz	15	pF	
	Power Dissipation Capacitance B to A	Outputs Disabled		2		

Notes:

1. This parameter is specified under test mode conditions.

08-0139 6 PS8773H 06/13/08

^{1.} This is the skew between any two outputs of the same package, and switching in the same direction. For $t_{SK(a)}$, Output 1 and Output 2 are any two outputs. For $t_{SK(b)}$, Output 1 and Output 2 are in the same bank. These parameters are warranted but not poroduction tested.

Parameter Measurement Information


V_{CCA}/V_{CCB} $1.2V \sim 1.6V$ $1.8V \pm 0.15V$ $2.5V \pm 0.2V$ $3.3V \pm 0.3V$	C _L 10pF 20pF 30pF 50pF	Output C_L C_L C_R Open C_R
		Output VCCI/2 VCCI/2 VCCI/2 VCCI/2 VCCI/2 VCCI/2 VCCO/2 VCCO/2 VCCO/2 VCCO/2 VOL
		Voltage Waveforms Propagation Delay Times Figure 1. Load Circuit and Voltage Waveforms
		Figure 1. Load Circuit and Voltage Waveforms

Notes:

- C_L includes probe and jig capacitance.
- Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- All input pulses are supplied by generators having the following characteristics: $PRR \le 10Mz$, $Z_O = 50\Omega$, $tr \le 2.5ns$, $tf \le 2.5ns$.
- The outputs are measured one at a time with one transition per measurement.
- \bullet t_{PLZ} and t_{PHZ} are the same as $t_{DIS.}$
- \bullet t_{PZL} and t_{PZH} are the same as $t_{EN}.$
- t_{PLH} and t_{PHL} are the same as t_{PD}.
- V_{CCI} defines the input port (V_{CCA} or V_{CCB}).
- V_{CCO} defines the output port (V_{CCA} or V_{CCB}).

08-0139 7 PS8773H 06/13/08

Ordering Information

Ordering Code	Packaging Code	Package Description
PI4ULS3V08ZFE	ZF	Pb-free & Green, 36-contact, 197-mil wide plastic TQFN

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- E = Pb-free and Green
- Adding an X Suffix = Tape/Reel

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com

PS8773H 06/13/08 8